Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots
نویسندگان
چکیده
منابع مشابه
Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots
We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it is optimal in the sense of the Kung and Traub conjecture. The comparisons are given with some ot...
متن کاملComputing Simple Roots by an Optimal Sixteenth-Order Class
The problem considered in this paper is to approximate the simple zeros of the function f x by iterative processes. An optimal 16th order class is constructed. The class is built by considering any of the optimal three-step derivative-involved methods in the first three steps of a four-step cycle in which the first derivative of the function at the fourth step is estimated by a combination of a...
متن کاملOptimal Geometric Hermite Interpolation of Curves
Bernstein{B ezier two{point Hermite G 2 interpolants to plane and space curves can be of degree up to 5, depending on the situation. We give a complete characterization for the cases of degree 3 to 5 and prove that rational representations are only required for degree 3. x1. Introduction and Overview We consider recovery of curves from irregularly sampled data. If the curves are to be represent...
متن کاملOn Constructing a Cubically Convergent Numerical Method for Multiple Roots
We propose the numerical method defined by xn+1 = xn − λ f(xn − μh(xn)) f ′(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-prec...
متن کاملA Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems
This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem (NLEP): A(λ)x = 0. The method approximates A(λ) by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rationa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Scientific World Journal
سال: 2014
ISSN: 2356-6140,1537-744X
DOI: 10.1155/2014/410410