Optimal state space reconstruction via Monte Carlo decision tree search
نویسندگان
چکیده
Abstract A novel idea for an optimal time delay state space reconstruction from uni- and multivariate series is presented. The entire embedding process considered as a game, in which each move corresponds to cycle subject evaluation through objective function. This way the procedure can be modeled tree, leaf holds specific value of By using Monte Carlo ansatz, proposed algorithm populates tree with many leafs by computing different possible paths final chosen that particular path, ends at lowest achieved method aims prevent getting stuck local minimum function used modular way, enabling practitioners choose statistic delays well suitable themselves. guarantees optimization over parameter long sampled sufficiently. As proof concept, we demonstrate superiority classical methods variety application examples. We compare recurrence plot-based statistics inferred reconstructions Lorenz-96 system highlight improved forecast accuracy map-like model data palaeoclimate isotope series. Finally, utilize detection causality its strength between observables gas turbine type thermoacoustic combustor.
منابع مشابه
Learning Predictive State Representations via Monte-Carlo Tree Search
Predictive State Representations (PSRs) are an efficient method for modelling partially observable dynamical systems. They have shown advantages over the latent state-based approaches by using functions of a set of observable quantities, called tests, to represent model states. As a consequence, discovering the set of tests for representing the state is one of the central problems in PSRs. Exis...
متن کاملState Aggregation in Monte Carlo Tree Search
Monte Carlo tree search (MCTS) algorithms are a popular approach to online decision-making in Markov decision processes (MDPs). These algorithms can, however, perform poorly in MDPs with high stochastic branching factors. In this paper, we study state aggregation as a way of reducing stochastic branching in tree search. Prior work has studied formal properties of MDP state aggregation in the co...
متن کاملMonte-Carlo Tree Search
representation of the game. It was programmed in LISP. Further use of abstraction was also studied by Friedenbach (1980). The combination of search, heuristics, and expert systems led to the best programs in the eighties. At the end of the eighties a new type of Go programs emerged. These programs made an intensive use of pattern recognition. This approach was discussed in detail by Boon (1990)...
متن کاملParallel Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a new best-first search method that started a revolution in the field of Computer Go. Parallelizing MCTS is an important way to increase the strength of any Go program. In this article, we discuss three parallelization methods for MCTS: leaf parallelization, root parallelization, and tree parallelization. To be effective tree parallelization requires two techni...
متن کاملMonte-Carlo Tree Search Solver
Recently, Monte-Carlo Tree Search (MCTS) has advanced the field of computer Go substantially. In this article we investigate the application of MCTS for the game Lines of Action (LOA). A new MCTS variant, called MCTS-Solver, has been designed to play narrow tactical lines better in sudden-death games such as LOA. The variant differs from the traditional MCTS in respect to backpropagation and se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2022
ISSN: ['1573-269X', '0924-090X']
DOI: https://doi.org/10.1007/s11071-022-07280-2