Optimal tracking controllers with Off-policy Reinforcement Learning Algorithm in Quadrotor
نویسندگان
چکیده
منابع مشابه
Algorithm selection of off-policy reinforcement learning algorithm
This paper formalises the problem of online algorithm selection in the context of Reinforcement Learning. The setup is as follows: given an episodic task and a finite number of off-policy RL algorithms, a meta-algorithm has to decide which RL algorithm is in control during the next episode so as to maximize the expected return. The article presents a novel meta-algorithm, called Epochal Stochas...
متن کاملOff-Policy Shaping Ensembles in Reinforcement Learning
Recent advances of gradient temporal-difference methods allow to learn off-policy multiple value functions in parallel without sacrificing convergence guarantees or computational efficiency. This opens up new possibilities for sound ensemble techniques in reinforcement learning. In this work we propose learning an ensemble of policies related through potential-based shaping rewards. The ensembl...
متن کاملAutonomous Quadrotor Control with Reinforcement Learning
Based on the same principles as a single-rotor helicopter, a quadrotor is a flying vehicle that is propelled by four horizontal blades surrounding a central chassis. Because of this vehicle’s symmetry and propulsion mechanism, a quadrotor is capable of simultaneously moving and steering by simple modulation of motor speeds [1]. This stability and relative simplicity makes quadrotors ideal for r...
متن کاملSafe and Efficient Off-Policy Reinforcement Learning
In this work, we take a fresh look at some old and new algorithms for off-policy, return-based reinforcement learning. Expressing these in a common form, we derive a novel algorithm, Retrace(λ), with three desired properties: (1) it has low variance; (2) it safely uses samples collected from any behaviour policy, whatever its degree of “off-policyness”; and (3) it is efficient as it makes the b...
متن کاملReinforcement Learning-based Quadrotor Control
Analysis of quadrotor dynamics and control is conducted. A linearized quadrotor system is controlled using modern techniques. A MATLAB quadrotor control toolbox is presented for rapid visualization of system response. Waypoint-based trajectory control of a quadrotor is performed and appended to the MATLAB toolbox. Finally, an investigation of control using reinforcement learning is conducted.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Science and Information Systems (FedCSIS), 2019 Federated Conference on
سال: 2022
ISSN: ['2300-5963']
DOI: https://doi.org/10.15439/2022r52