ORBIT SPACES OF FINITE ABELIAN TRANSFORMATION GROUPS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ORBIT SPACES OF ABELIAN p-GROUPS.

1. Let p be a prime and S a cohomology n-spherel over Z, (the integers mod p). Let 7ra be an abelian group of order pa and type (p,. . ,p) acting effectively on S to form a transformation group (S, 7ra). Let 5, be the 7ra-free part of S, that is, the union of orbits of cardinality pa. For 7rb C ira, denote by F(i7r,) the fixed-point set of irb. F(irb) is a cohomology sphere over Zp. Let n(irb) ...

متن کامل

A Unified Theory of Projective Spaces and Finite Abelian Groups

The similarity between finite-dimensional projective spaces and finite abelian groups has often been noted(1); and thus one may expect that the more general features of these two theories are identical. But the likeness is more than a superficial one; and consequently it is possible to give a unified treatment for spaces and groups. It may be worthwhile to indicate in a few lines the developmen...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1961

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.47.10.1662