Ordering process of self-organizing maps improved by asymmetric neighborhood function
نویسندگان
چکیده
منابع مشابه
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps.
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerg...
متن کاملSelf-Organizing Maps with Asymmetric Neighborhood Function
The self-organizing map (SOM) is an unsupervised learning method as well as a type of nonlinear principal component analysis that forms a topologically ordered mapping from the high-dimensional data space to a low-dimensional representation space. It has recently found wide applications in such areas as visualization, classification, and mining of various data. However, when the data sets to be...
متن کاملSelf-Organizing Feature Maps with Self-Organizing Neighborhood Widths
Self-organizing feature maps with self-determined local neighborhood widths are applied to construct principal manifolds of data distributions. This task exempli es the problem of the learning of learning parameters in neural networks. The proposed algorithm is based upon analytical results on phase transitions in self-organizing feature maps available for idealized situations. By illustrative ...
متن کاملSelf-organizing maps with recursive neighborhood adaptation
Self-organizing maps (SOMs) are widely used in several fields of application, from neurobiology to multivariate data analysis. In that context, this paper presents variants of the classic SOM algorithm. With respect to the traditional SOM, the modifications regard the core of the algorithm, (the learning rule), but do not alter the two main tasks it performs, i.e. vector quantization combined w...
متن کاملImproved Self-Organizing Maps and Speech Compression
Recent developments of Self-Organizing Maps or Kohonen networks become more and more interesting in many fields such as: pattern recognition, clustering, speech recognition, data compression, medical diagnosis... Kohonen networks is unsupervised learning models. The results obtained by the Kohonen networks are dependent on their parameters such as the architecture of the Kohonen map, the later ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cognitive Neurodynamics
سال: 2008
ISSN: 1871-4080,1871-4099
DOI: 10.1007/s11571-008-9060-2