Ordinal classification for efficient plant stress prediction in hyperspectral data
نویسندگان
چکیده
منابع مشابه
Classification of Ordinal Data
Predictive learning has traditionally been a standard inductive learning, where different subproblem formulations have been identified. One of the most representative is classification, consisting on the estimation of a mapping from the feature space into a finite class space. Depending on the cardinality of the finite class space we are left with binary or multiclass classification problems. F...
متن کاملHyperspectral Image Analysis for Plant Stress Detection
Plant stress significantly reduces plant productivity. Automated on-the-go mapping of plant stress allows for timely intervention and mitigation of the problem before critical thresholds are exceeded, thereby maximizing productivity. A hyperspectral camera analyzed the spectral signature of plant leaves to identify the plant water stress. Five different levels of water treatment were created on...
متن کاملEfficient transmission and classification of hyperspectral image data
An extension of a newly developed cluster-space representation is applied to efficient data transmission and classification. Cluster-space classification, which is an automatic hybrid supervised and unsupervised classification procedure, can be performed in two stages. A “semiproduct” with low entropy is generated at the sender end. It is then transmitted to a range of users for further classif...
متن کاملCluster-space representation for hyperspectral data classification
This paper presents a generalization of the hybrid supervised–unsupervised approach to image classification, and an automatic procedure for implementing it with hyperspectral data. Cluster-space representation is introduced in which clustered training data is displayed in a one-dimensional (1-D) cluster-space showing its probability distribution. This representation leads to automatic associati...
متن کاملRegularized RBF Networks for Hyperspectral Data Classification
In this communication, we analyze several regularized types of Radial Basis Function (RBF) Networks for crop classification using hyperspectral images. We compare the regularized RBF neural network with Support Vector Machines (SVM) using the RBF kernel, and AdaBoost Regularized (ABR) algorithm using RBF bases, in terms of accuracy and robustness. Several scenarios of increasing input space dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2014
ISSN: 2194-9034
DOI: 10.5194/isprsarchives-xl-7-29-2014