Orthogonal Gaussian process models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Process Dynamical Models

This paper introduces Gaussian Process Dynamical Models (GPDM) for nonlinear time series analysis. A GPDM comprises a low-dimensional latent space with associated dynamics, and a map from the latent space to an observation space. We marginalize out the model parameters in closed-form, which amounts to using Gaussian Process (GP) priors for both the dynamics and the observation mappings. This re...

متن کامل

Gaussian Process Topic Models

We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learnin...

متن کامل

Gaussian Process Morphable Models

Models of shape variations have become a central component for the automated analysis of images. An important class of shape models are point distribution models (PDMs). These models represent a class of shapes as a normal distribution of point variations, whose parameters are estimated from example shapes. Principal component analysis (PCA) is applied to obtain a low-dimensional representation...

متن کامل

Multiple Gaussian Process Models

We consider a Gaussian process formulation of the multiple kernel learning problem. The goal is to select the convex combination of kernel matrices that best explains the data and by doing so improve the generalisation on unseen data. Sparsity in the kernel weights is obtained by adopting a hierarchical Bayesian approach: Gaussian process priors are imposed over the latent functions and general...

متن کامل

Revisiting Gaussian Process Dynamical Models

The recently proposed Gaussian process dynamical models (GPDMs) have been successfully applied to time series modeling. There are four learning algorithms for GPDMs: maximizing a posterior (MAP), fixing the kernel hyperparameters ᾱ (Fix.ᾱ), balanced GPDM (B-GPDM) and twostage MAP (T.MAP), which are designed for model training with complete data. When data are incomplete, GPDMs reconstruct the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2017

ISSN: 1017-0405

DOI: 10.5705/ss.202015.0404