Orthogonal learning-based Gray Wolf Optimizer for identifying the uncertain parameters of various photovoltaic models

نویسندگان

چکیده

Defining the optimal parameters for photovoltaic (PV) system model is essential design, evolution, development, estimation, and analysis of PV power system. Therefore, it crucial to properly identify best models based on modern computational techniques. As a result, this research proposes new Orthogonal-Learning-Based Gray Wolf Optimizer (OLBGWO) identifying uncertain in cell using local exploratory approach. The orthogonal-learning-based (OLB) technique enhances exploitation exploration capabilities original (GWO) modified vector parameter called , which promotes highly reliable balance between phases algorithm. During iterative procedure OLBGWO, OLB methodology employed obtain solution weaker populations guides population examine prospective search area. Additionally, an exponential decay function used reduce value . proposed approach solve system's estimation problem. presented OLBGWO algorithm estimates single-diode (SDM), double-diode (DDM), module model. OLBGWO's performance compared those other competing algorithms demonstrate its superiority. simulation results that provides fast convergence speed while maintaining high accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Healthcare Districting Optimization Using Gray Wolf Optimizer and Ant Lion Optimizer Algorithms (case study: South Khorasan Healthcare System in Iran)

In this paper, the problem of population districting in the health system of South Khorasan province has been investigated in the form of an optimization problem. Now that the districting problem is considered as a strategic matter, it is vital to obtain efficient solutions in order to implement in the system. Therefore in this study two meta-heuristic algorithms, Ant Lion Optimizer (ALO) and G...

متن کامل

Grey Wolf Optimizer

This work proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) inspired by grey wolves (Canis lupus). The GWO algorithm mimics the leadership hierarchy and hunting mechanism of grey wolves in nature. Four types of grey wolves such as alpha, beta, delta, and omega are employed for simulating the leadership hierarchy. In addition, the three main steps of hunting, searching for prey, enc...

متن کامل

the application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)

هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...

15 صفحه اول

Using the gray wolf optimizer for solving optimal reactive power dispatch problem

This paper presents the use of a new meta-heuristic technique namely gray wolf optimizer (GWO) which is inspired from gray wolves’ leadership and hunting behaviors to solve optimal reactive power dispatch (ORPD) problem. ORPD problem is a well-known nonlinear optimization problem in power system. GWO is utilized to find the best combination of control variables such as generator voltages, tap c...

متن کامل

Comparing the capability of various models for predicting of the Bayer process parameters

In the present study, prediction of Alumina recovery efficiency (A.R.E), the amount of produced red mud (A.P.R), red mud settling rate (R.S.R) and bound-soda losses (B.S.L) in Bayer process red mud has been carried out for the first time in the field. These predictions are based on Lime to bauxite ratio and chemical analyses of bauxite and lime as Bayer process feed materials. Radial basis func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optik

سال: 2021

ISSN: ['0030-4026', '1618-1336']

DOI: https://doi.org/10.1016/j.ijleo.2021.167973