Osculating hypersurfaces of higher order

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lines and Osculating Lines of Hypersurfaces

This is a detailed study of the infinitesimal variation of the varieties of lines and osculating lines through a point of a low degree hypersurface in projective space. The motion is governed by a system of partial differential equations which we describe explicitly.

متن کامل

Higher Order Invariants of Levi Degenerate Hypersurfaces

The first part of this paper considers higher order CR invariants of three dimensional hypersurfaces of finite type. Using a full normal form we give a complete characterization of hypersurfaces with trivial local automorphism group, and analogous results for finite groups. The second part considers hypersurfaces of finite Catlin multitype, and the Kohn-Nirenberg phenomenon in higher dimensions...

متن کامل

Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures

Given a positive function F on S which satisfies a convexity condition, for 1 ≤ r ≤ n, we define the r-th anisotropic mean curvature function H r for hypersurfaces in R which is a generalization of the usual r-th mean curvature function. We prove that a compact embedded hypersurface without boundary in R with H r = constant is the Wulff shape, up to translations and homotheties. In case r = 1, ...

متن کامل

Higher dimensional Scherk’s hypersurfaces

In 3-dimensional Euclidean space Scherk second surfaces are singly periodic embedded minimal surfaces with 4 planar ends. In this paper, we obtain a natural generalization of Scherk’s second surfaces in higher dimensional Euclidean spaces. In particular we show that, in higher dimensional Euclidean spaces R, for n ≥ 3, there exists n−1-periodic embedded minimal hypersurfaces with 4 hyperplanar ...

متن کامل

Spacelike hypersurfaces in de Sitter space with constant higher-order mean curvature

ing from (2.6), we obtain that ∫ M ( H1Hr −Hr+1 〈N ,a〉dV = 0. (3.1) We know from Newton inequality [2] that Hr−1Hr+1 ≤ H2 r , where the equality implies that k1 = ··· = kn. Hence Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr−1−Hr ) . (3.2) It derives from Lemma 2.1 that 0≤H1/r r ≤H1/r−1 r−1 ≤ ··· ≤H1/2 2 ≤H1. (3.3) Thus we conclude that Hr−1 ( H1Hr −Hr+1 ≥Hr ( H1Hr1 −Hr ≥ 0, (3.4) and if r ≥ 2, the equalities h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lietuvos matematikos rinkinys

سال: 2011

ISSN: 2335-898X,0132-2818

DOI: 10.15388/lmr.2011.gm01