Outer functions and uniform integrability
نویسندگان
چکیده
منابع مشابه
Uniform Integrability and the Pointwtse Ergodic Theorem
Let iX, 03, m) be a finite measure space. We shall denote by L*im) (1 èp< °°) the Banach space of all real-valued (B-measurable functions/ defined on X such that |/[ p is m-integrable, and by L°°(w) the Banach space of all real-valued, (B-measurable, w-essentially bounded functions defined on X; as usual, the norm in Lpim) is given by 11/11,.= {fx\fix)\pdm}1'*, and the norm in Lxim) by \\g\\x =...
متن کاملIntegrability of Superharmonic Functions and Subharmonic Functions
We apply the coarea formula to obtain integrability of superharmonic functions and nonintegrability of subharmonic functions. The results involve the Green function. For a certain domain, say Lipschitz domain, we estimate the Green function and restate the results in terms of the distance from the boundary.
متن کاملUniform Integrability of Approximate Green Functions of Some Degenerate Elliptic Operators
Here 〈., .〉 denotes the usual Euclidean inner product, and υ, ω are weight functions that will be stipulated below. Throughout, we will use the following notations. For functions f and g, we shall write f g to indicate that f ≤ Cg for some positive constant C. We write f ≈ g if f g and g f . We shall use Bt(x) to designate a ball of radius t centered at x. Also, tB will be used to represent the...
متن کاملDefinition of Integrability for Partial Functions from R to R and Integrability for Continuous Functions
(1) Let F , F1, F2 be finite sequences of elements of R and given r1, r2. If F1 = 〈r1〉 F or F1 = F a 〈r1〉 and if F2 = 〈r2〉 F or F2 = F a 〈r2〉, then ∑(F1−F2) = r1− r2. (2) Let F1, F2 be finite sequences of elements of R. If lenF1 = lenF2, then len(F1 +F2) = lenF1 and len(F1−F2) = lenF1 and ∑(F1 +F2) = ∑F1 +∑F2 and ∑(F1−F2) = ∑F1−∑F2. (3) Let F1, F2 be finite sequences of elements of R. If lenF1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2018
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2018.4360