Outlier Detection in High Dimensional Data
نویسندگان
چکیده
منابع مشابه
Outlier detection for high dimensional data pdf
Is particularly useful for high dimensional data where outliers cannot be found.High dimensional data in Euclidean space pose special challenges to data. In about just the last few years, the task of unsupervised outlier detection has found.Outlier detection is an outstanding data mining task referred to open pdf with mac word class="text" href="https://tokiqivy.files.wordpress.com/2015/06/opel...
متن کاملOutlier detection for high-dimensional data
Outlier detection is an integral component of statistical modelling and estimation. For highdimensional data, classical methods based on the Mahalanobis distance are usually not applicable. We propose an outlier detection procedure that replaces the classical minimum covariance determinant estimator with a high-breakdown minimum diagonal product estimator. The cut-off value is obtained from the...
متن کاملHybrid Approach for Outlier Detection in High Dimensional Data
It has been observed recently that the prominence of multidimensional data is increasing. Existing outlier detection techniques generally fail to work on multi-dimensional data. The need for analyzing high dimensional data has thus increased in today’s data trends. It has enormous application in medical domain, network intrusion and satellite imagery. Even though there are existing methodologie...
متن کاملTowards Enabling Outlier Detection in Large, High Dimensional Data Warehouses
In this work we present a novel framework that permits us to detect outliers in a data warehouse. We extend the commonly used definition of distance-based outliers in order to cope with the large data domains that are typical in dimensional modeling of OLAP datasets. Our techniques utilize a twolevel indexing scheme. The first level is based on Locality Sensitivity Hashing (LSH) and allows us t...
متن کاملOutlier Detection in High Dimensional, Spatial and Sequential Data Sets
Of all the data mining techniques, outlier detection seems closest to the definition of “discovering nuggets of information” in large databases. When an outlier is detected, and determined to be genuine, it can provide insights, which can radically change our understanding of the underlying process. The purpose of the research underlying this thesis was to investigate and devise methods to mine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Information & Knowledge Management
سال: 2020
ISSN: 0219-6492,1793-6926
DOI: 10.1142/s0219649220400134