Outlier robust system identification: a Bayesian kernel-based approach

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier robust system identification: a Bayesian kernel-based approach

In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as...

متن کامل

Outlier absorbing based on a Bayesian approach

The presence of outliers is prevalent in machine learning applications and may produce misleading results. In this paper a new method for dealing with outliers and anomal samples is proposed. To overcome the outlier issue, the proposed method combines the global and local views of the samples. By combination of these views, our algorithm performs in a robust manner. The experimental results sho...

متن کامل

Bayesian kernel-based system identification with quantized output data

In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Ba...

متن کامل

Robust EM kernel-based methods for linear system identification

Recent developments in system identification have brought attention to regularized kernel-based methods. This type of approach has been proven to compare favorably with classic parametric methods. However, current formulations are not robust with respect to outliers. In this paper, we introduce a novel method to robustify kernel-based system identification methods. To this end, we model the out...

متن کامل

A kernel-based approach to overparameterized Hammerstein system identification

The object of this paper is the identification of Hammerstein systems, which are dynamic systems consisting of a static nonlinearity and a linear time-invariant dynamic system in cascade. We assume that the nonlinear function can be described as a linear combination of p basis functions. We model the system dynamics by means of an np-dimensional vector. This vector, usually referred to as overp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IFAC Proceedings Volumes

سال: 2014

ISSN: 1474-6670

DOI: 10.3182/20140824-6-za-1003.01587