Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury
نویسندگان
چکیده
منابع مشابه
Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury
A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic resp...
متن کاملApoptosis in substantia nigra following developmental striatal excitotoxic injury.
We have previously observed that an axon-sparing injury to the developing striatum induced by the excitotoxin quinolinate results in a decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the adult. This decrease occurs in the absence of direct injury to the SNpc. As the striatum is a major target for the SNpc dopaminergic system, we have hypothesized that a decrease...
متن کاملMeteorin Regulates Mesendoderm Development by Enhancing Nodal Expression
During gastrulation, distinct lineage specification into three germ layers, the mesoderm, endoderm and ectoderm, occurs through an elaborate harmony between signaling molecules along the embryonic proximo-distal and anterior-posterior axes, and Nodal signaling plays a key role in the early embryonic development governing embryonic axis formation, mesoderm and endoderm specification, and left-ri...
متن کاملPhasic Dopamine Release Drives Rapid Activation of Striatal D2-Receptors
Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G protein activated inwardly rectifying p...
متن کاملThoracic Rat Spinal Cord Contusion Injury Induces Remote Spinal Gliogenesis but Not Neurogenesis or Gliogenesis in the Brain
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Cellular Neuroscience
سال: 2016
ISSN: 1662-5102
DOI: 10.3389/fncel.2016.00177