p-forms on d-spherical tessellations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Layout Implementation using Centroidal Voronoi Tessellations

The 3D tree visualization faces multiple challenges: the election of an appropriate layout, the use of the interactions that make the data exploration easier and a metaphor that helps in the process of information understanding. A good combination of these elements will result in a visualization that effectively conveys the key features of a complex structure or system to a wide range of users ...

متن کامل

ON h-COBORDISMS OF SPHERICAL SPACE FORMS

Given a manifold M of dimension at least 4 whose universal covering is homeomorphic to a sphere, the main result states that a compact manifold W is isomorphic to a cylinder M × [0, 1] if and only if W is homotopy equivalent to this cylinder and the boundary is isomorphic to two copies of M ; this holds in the smooth, PL and topological categories. The result yields a classification of smooth, ...

متن کامل

Spherical Minimal Immersions of Spherical Space Forms

Introduction. A number of authors [C], [DW1], [DW2], [L], [T] have studied minimal isometric immersions of Riemannian manifolds into round spheres, and in particular of round spheres into round spheres. As was observed by T. Takahashi [T], if Φ:M → S(r) ⊂ R is such a minimal immersion, then the components of Φ must be eigenfuctions of the Laplace operator on M for the same eigenvalue. And conve...

متن کامل

Spherical Space Forms Revisited

We give a simplified proof of J. A. Wolf’s classification of finite groups that can act freely and isometrically on a round sphere of some dimension. We slightly improve the classification by removing some non-obvious redundancy. The groups are the same as the Frobenius complements of finite group theory. In chapters 4–7 of his famous Spaces of Constant Curvature [7], J. A. Wolf classified the ...

متن کامل

Spherical and planar folding tessellations by kites and equilateral triangles

We prove that there is a unique folding tessellation of the sphere and an infinite family of folding tessellations of the plane with prototiles a kite and an equilateral triangle. Each tiling of this family is obtained by successive gluing of two patterns composed of triangles and kites, respectively. The combinatorial structure and the symmetry group is achieved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2007

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2007.01.001