Packing paths of length at least two

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing paths of length at least two

We give a simple proof for Kaneko’s theorem which gives a su2cient and necessary condition for the existence of vertex disjoint paths in a graph, each of length at least two, that altogether cover all vertices of the original graph. Moreover we generalize this theorem and give a formula for the maximum number of vertices that can be covered by such a path system. c © 2004 Elsevier B.V. All righ...

متن کامل

A Parameterized Perspective on Packing Paths of Length Two

We study (vertex-disjoint) packings of paths of length two (i.e., of P2’s) in graphs under a parameterized perspective. Starting from a maximal P2-packing P of size j we use extremal combinatorial arguments for determining how many vertices of P appear in some P2-packing of size (j + 1) (if it exists). We prove that one can ’reuse’ 2.5j vertices. Based on a WIN-WIN approach, we build an algorit...

متن کامل

Length of Longest Cycles in a Graph Whose Relative Length is at Least Two

Let G be a graph. We denote p(G) and c(G) the order of a longest path and the order of a longest cycle of G, respectively. Let κ(G) be the connectivity of G, and let σ3(G) be the minimum degree sum of an independent set of three vertices in G. In this paper, we prove that if G is a 2-connected graph with p(G) − c(G) ≥ 2, then either (i) c(G) ≥ σ3(G) − 3 or (ii) κ(G) = 2 and p(G) ≥ σ3(G)− 1. Thi...

متن کامل

Packing paths in digraphs

Let G be a xed collection of digraphs. Given a digraph H, a Gpacking of H is a collection of vertex disjoint subgraphs of H, each isomorphic to a member of G. A G-packing, P, is maximum if the number of vertices belonging to some member of P is maximum, over all G-packings. The analogous problem for undirected graphs has been extensively studied in the literature. We concentrate on the cases wh...

متن کامل

Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two

For any pattern α of length at most two, we enumerate equivalence classes of Motzkin paths where two paths of the same length are equivalent whenever they coincide on all occurrences of the pattern α.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2004

ISSN: 0012-365X

DOI: 10.1016/j.disc.2004.01.016