Packing Tree Factors in Random and Pseudo-Random Graphs
نویسندگان
چکیده
منابع مشابه
Packing Tree Factors in Random and Pseudo-random Graphs
For a fixed graph H with t vertices, an H-factor of a graph G with n vertices, where t divides n, is a collection of vertex disjoint (not necessarily induced) copies of H in G covering all vertices of G. We prove that for a fixed tree T on t vertices and > 0, the random graph Gn,p, with n a multiple of t, with high probability contains a family of edge-disjoint T -factors covering all but an -f...
متن کاملTriangle Factors In Sparse Pseudo-Random Graphs
The goal of the paper is to initiate research towards a general, Blow-up Lemma type embedding statement for pseudo-random graphs with sublinear degrees. In particular, we show that if the second eigenvalue λ of a d-regular graph G on 3n vertices is at most cd/n logn, for some sufficiently small constant c> 0, then G contains a triangle factor. We also show that a fractional triangle factor alre...
متن کاملArboricity and spanning-tree packing in random graphs∗
We study the arboricity A and the maximum number T of edge-disjoint spanning trees of the classical random graph G (n, p). For all p(n) ∈ [0, 1], we show that, with high probability, T is precisely the minimum between δ and bm/(n − 1)c, where δ is the smallest degree of the graph and m denotes the number of edges. Moreover, we explicitly determine a sharp threshold value for p such that: above ...
متن کاملPacking hamilton cycles in random and pseudo-random hypergraphs
We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We prove that for k/2 < ` ≤ k, with high probability almost all edges of the ran...
متن کاملRandom and Pseudo-Random Walks on Graphs
Random walks on graphs have turned out to be a powerful tool in the design of algorithms and other applications. In particular, expander graphs, which are graphs on which random walks have particularly good properties, are extremely useful in complexity and other areas of computer science. In this chapter we study random walks on general regular graphs, leading to a the randomized logspace algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2014
ISSN: 1077-8926
DOI: 10.37236/3285