Pairwise constraints cross entropy fuzzy clustering algorithm based on manifold learning and feature selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Portfolio selection based on fuzzy cross-entropy

In this paper, the Kapur cross-entropy minimization model for portfolio selection problem is discussed under fuzzy environment, which minimizes the divergence of the fuzzy investment return from a priori one. First, three mathematical models are proposed by defining divergence as cross-entropy, average return as expected value and risk as variance, semivariance and chance of bad outcome, respec...

متن کامل

A Semi - supervised Text Clustering Algorithm Based on Pairwise Constraints ★

In this paper, an active learning method which can effectively select pairwise constraints during clustering procedure was presented. A novel semi-supervised text clustering algorithm was proposed, which employed an effective pairwise constraints selection method. As the samples on the fuzzy boundary are far away from the cluster center in the clustering procedure, they can be easily divided in...

متن کامل

A Clustering Based Feature Subset Selection Algorithm for High-Dimensional Microarray Data Using Fuzzy Entropy with Neuro-Fuzzy Classifier

Feature selection involves the process of selecting a subset of relevant features that produces the result as the original set of features. The central assumption of using a feature selection technique in high dimensional data is that the data may contain many redundant or irrelevant features. Microarray dataset may also contain a huge number of redundant (insignificant) and irrelevant features...

متن کامل

Supervised and Semisupervised Clustering Based on Feature Selection Algorithm Process

In clustering process, semi-supervised learning is a tutorial of contrivance learning methods that make usage of both labeled and unlabeled data for training characteristically a trifling quantity of labeled data with a great quantity of unlabeled data. Semi-supervised learning cascades in the middle of unsupervised learning (without any labeled training data) and supervised learning (with comp...

متن کامل

An Improved PSO Clustering Algorithm with Entropy-based Fuzzy Clustering

Particle swarm optimization is a based-population heuristic global optimization technology and is referred to as a swarm-intelligence technique. In general, each particle is initialized randomly which increases the iteration time and makes the result unstable. In this paper an improved clustering algorithm combined with entropy-based fuzzy clustering (EFC) is presented. Firstly EFC algorithm ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1948/1/012033