Parabolic Muckenhoupt weights in the Euclidean space
نویسندگان
چکیده
منابع مشابه
Scalar and Vector Muckenhoupt Weights
We inspect the relationship between the Ap,q condition for families of norms on vector valued functions and the Ap condition for scalar weights. In particular we will show if we are considering a norm-valued function ρ(·) such that, uniformly in all nonzero vectors x, ρ(·)(x) p ∈ Ap and ρ(·)(x) ∈ Aq then the following hold: If p = q = 2, and functions take values in R then ρ ∈ A2,2. If p = q = ...
متن کاملParaexponentials, Muckenhoupt Weights, and Resolvents of Paraproducts
We analyze the stability of Muckenhoupt’s RHdp and A d p classes of weights under a nonlinear operation, the λ-operation. We prove that the dyadic doubling reverse Hölder classes RHdp are not preserved under the λ-operation, but the dyadic doubling Ap classes A d p are preserved for 0 < λ < 1. We give an application to the structure of resolvent sets of dyadic paraproduct operators.
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2011.01.040