Parallel solution of linear DAEs by multisplitting waveform relaxation methods
نویسندگان
چکیده
منابع مشابه
Parallel multisplitting methods for singular linear systems
In this paper, we discuss convergence of the extrapolated iterative methods for linear systems with the coefficient matrices are singular H-matrices. And we present the sufficient and necessary conditions for convergence of the extrapolated iterative methods. Moreover, we apply the results to the GMAOR methods. Finally, we give one numerical example. Keywords—singular H-matrix, linear systems, ...
متن کاملNon - Stationary Parallel Multisplitting Aor Methods ∗
Non-stationary parallel multisplitting iterative methods based on the AOR method are studied for the solution of nonsingular linear systems. Convergence of the synchronous and asyn-chronous versions of these methods is studied for H–matrices. Furthermore, computational results about these methods on both shared and distributed memory multiprocessors are discussed. The numerical examples present...
متن کاملParareal Schwarz Waveform Relaxation Methods
Solving an evolution problem in parallel is naturally undertaken by trying to parallelize the algorithm in space, and then still follow a time stepping method from the initial time t = 0 to the final time t = T . This is especially easy to do when an explicit time stepping method is used, because in that case the time step for each component is only based on past, known data, and the time stepp...
متن کاملOn Sor Waveform Relaxation Methods
Waveform relaxation is a numerical method for solving large-scale systems of ordinary differential equations on parallel computers. It differs from standard iterative methods in that it computes the solution on many time levels or along a continuous time interval simultaneously. This paper deals with the acceleration of the standard waveform relaxation method by successive overrelaxation (SOR) ...
متن کاملParallel Solution of Linear Systems by Quadrant Interlocking Factorisation Methods
This paper presents a parallel algorithm for the solution of linear systems and determinant evaluation suitable for use on the proposed parallel computers of the future. The new method can be considered as extending the novel matrix factorisation strategies introduced by Evans and Hatzopoulos [l] and Evans and Hadjidimos [2] in which quadrant interlocking factors are considered instead of the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2001
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(00)00199-3