Parameterizing the Spatial Markov Model From Breakthrough Curve Data Alone
نویسندگان
چکیده
منابع مشابه
Parameterizing the Spatial Markov Model From Breakthrough Curve Data Alone
The spatial Markov model (SMM) is an upscaled Lagrangian model that effectively captures anomalous transport across a diverse range of hydrologic systems. The distinct feature of the SMM relative to other random walk models is that successive steps are correlated. To date, with some notable exceptions, the model has primarily been applied to data from high-resolution numerical simulations and c...
متن کاملa study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
Spatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملSpatial Correlation Testing for Errors in Panel Data Regression Model
To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...
متن کاملMining Model Trees from Spatial Data
Mining regression models from spatial data is a fundamental task in Spatial Data Mining. We propose a method, namely Mrs-SMOTI, that takes advantage from a tight-integration with spatial databases and mines regression models in form of trees in order to partition the sample space. The method is characterized by three aspects. First, it is able to capture both spatially global and local effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2017
ISSN: 0043-1397,1944-7973
DOI: 10.1002/2017wr021810