Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model
نویسندگان
چکیده
منابع مشابه
Parameter Estimation of Geographically Weighted Trivariate Weibull Regression Model
In this study, Geographically Weighted Trivariate Weibull Regression (GWTWR) model and parameter estimation procedure are proposed. GWTWR is trivariate Weibull regression model which all of the regression parameters depend on the geographical location, and parameter estimation is done locally at each location in the study area. The location is expressed as a point coordinate in two-dimensional ...
متن کاملOrdinal logistic regression.
©FSRH J Fam Plann Reprod Health Care 2008: 34(3) What is it? When a response variable has only two possible values (e.g. recurrence/not), binary logistic regression is commonly used to test or model the association between that response and a number of potential explanatory variables, with each association estimated in terms of an odds ratio (OR). Multinomial logistic regression is an extension...
متن کاملArea-to-point parameter estimation with geographically weighted regression
The modifiable areal unit problems (MAUP) is a problem by which aggregated units of data influence the results of spatial data analysis. Standard GWR, which ignores aggregation mechanisms, cannot be considered to serve as an efficient countermeasure of MAUP. Accordingly, this study proposes a type of GWR with aggregation mechanisms, termed area-to-point (ATP) GWR herein. ATP GWR, which is close...
متن کاملSmall Area Estimation Via M- Quantile Geographically Weighted Regression
The effective use of spatial information, that is the geographic locations of population units, in a regression model-based approach to small area estimation is an important practical issue. One approach for incorporating such spatial information in a small area regression model is via Geographically Weighted Regression (GWR). In GWR the relationship between the outcome variable and the covaria...
متن کاملC.5 Geographically Weighted Regression
Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2017
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/855/1/012064