Parametric modeling of quantile regression coefficient functions with count data
نویسندگان
چکیده
منابع مشابه
Local Polynomial Quantile Regression With Parametric Features
We propose a new approach to conditional quantile function estimation that combines both parametric and nonparametric techniques. At each design point, a global, possibly incorrect, pilot parametric model is locally adjusted through a kernel smoothing fit. The resulting quantile regression estimator behaves like a parametric estimator when the latter is correct and converges to the nonparametri...
متن کاملFlexible parametric quantile regression model
This article introduces regression quantile models using both RS and FKML generalised lambda distributions (GLD) and demonstrates the versatility of proposed models for a range of linear/non linear and heteroscedastic/homoscedastic empirical data. Owing to the rich shapes of GLDs, GLD quantile regression is a competitive flexible model compared to standard quantile regression. The proposed meth...
متن کاملQuantile regression for overdispersed count data: a hierarchical method
Generalized Poisson regression is commonly applied to overdispersed count data, and focused on modelling the conditional mean of the response. However, conditional mean regression models may be sensitive to response outliers and provide no information on other conditional distribution features of the response. We consider instead a hierarchical approach to quantile regression of overdispersed c...
متن کاملRegression Modeling for Nonparametric Estimation of Distribution and Quantile Functions
We propose a local linear estimator of a smooth distribution function. This estimator applies local linear techniques to observations from a regression model in which the value of the empirical distribution function equals the value of true distribution plus an error term. We show that, for most commonly used kernel functions, our local linear estimator has a smaller asymptotic mean integrated ...
متن کاملQuantile regression with aggregated data
Analyses using aggregated data may bias inference. In this work we show how to avoid or at least reduce this bias when estimating quantile regressions using aggregated information. This is possible by considering the unconditional quantile regression recently introduced by Firpo et al (2009) and using a specific strategy to aggregate the data.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Methods & Applications
سال: 2021
ISSN: 1618-2510,1613-981X
DOI: 10.1007/s10260-021-00557-7