Path generating functions and continued fractions
نویسندگان
چکیده
منابع مشابه
Path generating functions and continued fractions
This paper extends Flajolet’s (Discrete Math. 32 (1980) 125-161) combinatorial theory of continued fractions by obtaining the generating function for paths between horizontal lines, with arbitrary starting and ending points and weights on the steps. Consequences of the combinatorial arguments used to determine this result are combinatorial proofs for many classical identities involving continue...
متن کاملGenerating bessel functions in mie scattering calculations using continued fractions.
A new method of generating the Bessel functions and ratios of Bessel functions necessary for Mie calculations is presented. Accuracy is improved while eliminating the need for extended precision word lengths or large storage capability. The algorithm uses a new technique of evaluating continued fractions that starts at the beginning rather than the tail and has a built-in error check. The conti...
متن کاملContinued Fractions and Modular Functions
It is widely recognized that the work of Ramanujan deeply influenced the direction of modern number theory. This influence resonates clearly in the “Ramanujan conjectures.” Here I will explore another part of his work whose position within number theory seems to be less well understood, even though it is more elementary, namely that related to continued fractions. I will concentrate on the spec...
متن کاملPseudo-factorials, Elliptic Functions, and Continued Fractions
This study presents miscellaneous properties of pseudo-factorials, which are numbers whose recurrence relation is a twisted form of that of usual factorials. These numbers are associated with special elliptic functions, most notably, a Dixonian and a Weierstraß function, which parametrize the Fermat cubic curve and are relative to a hexagonal lattice. A continued fraction expansion of the ordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1986
ISSN: 0097-3165
DOI: 10.1016/0097-3165(86)90110-x