Peak demand alert system based on electricity demand forecasting for smart meter data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Probabilistic Forecasting of Electricity Demand with Smart Meter Data

Electricity smart meters record consumption, on a near real-time basis, at the level of individual commercial and residential properties. From this, a hierarchy can be constructed consisting of time series of demand at the smart meter level, and at various levels of aggregation, such as substations, cities and regions. Forecasts are needed at each level to support the efficient and reliable man...

متن کامل

The Use of Smart Meter Data to Forecast Electricity Demand

Over the past years, smart meters have been widely deployed in many countries. These devices replace conventional electrical meters and are able to provide measurements for time intervals of typically less than one hour and can send these to the utility. This technology provides utilities a large amount of data and the opportunity to use this data to improve the way they run the grid. We want t...

متن کامل

Challenges in forecasting peak electricity demand

We want to forecast the peak electricity demand in a half-hour period in twenty years time. We have fifteen years of half-hourly electricity data, temperature data and some economic and demographic data. The location is South Australia: home to the most volatile electricity demand in the world.

متن کامل

Demand Forecasting for Electricity

Introduction Forecasting demand is both a science and an art. Econometric methods of forecasting, in the context of energy demand forecasting, can be described as ‘the science and art of specification, estimation, testing and evaluation of models of economic processes’ that drive the demand for fuels. The need and relevance of forecasting demand for an electric utility has become a much-discuss...

متن کامل

Forecasting Uncertainty in Electricity Demand

Generalized Additive Models (GAM) are a widely popular class of regression models to forecast electricity demand, due to their high accuracy, flexibility and interpretability. However, the residuals of the fitted GAM are typically heteroscedastic and leptokurtic caused by the nature of energy data. In this paper we propose a novel approach to estimate the time-varying conditional variance of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy and Buildings

سال: 2020

ISSN: 0378-7788

DOI: 10.1016/j.enbuild.2020.110307