Penalized Likelihood Estimation of Gamma Distributed Response Variable via Corrected Solution of Regression Coefficients

نویسندگان

چکیده

A Gamma distributed response is subjected to regression penalized likelihood estimations of Least Absolute Shrinkage and Selection Operator (LASSO) Minimax Concave Penalty via Generalized Linear Models (GLMs). The related disturbance controls the influence skewness spread in corrected path solutions coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection via Penalized Likelihood

Variable selection is vital to statistical data analyses. Many of procedures in use are ad hoc stepwise selection procedures, which are computationally expensive and ignore stochastic errors in the variable selection process of previous steps. An automatic and simultaneous variable selection procedure can be obtained by using a penalized likelihood method. In traditional linear models, the best...

متن کامل

Generalized Nonparametric Regression via Penalized Likelihood

We consider the asymptotic analysis of penalized likelihood type estimators for generalized non-parametric regression problems in which the target parameter is a vector valued function defined in terms of the conditional distribution of a response given a set of covariates, A variety of examples including ones related to generalized linear models and robust smoothing are covered by the theory. ...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

Penalized Likelihood Functional Regression

This paper studies the generalized functional linear model with a scalar response and a functional predictor. The response given the functional predictor is assumed to come from the distribution of an exponential family. A penalized likelihood approach is proposed to estimate the unknown intercept and coefficient function in the model. Inference tools such as point-wise confidence intervals of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Applied Statistical Methods

سال: 2021

ISSN: ['1538-9472']

DOI: https://doi.org/10.22237/jmasm/1608552720