Perbandingan TF-IDF dengan Count Vectorization Dalam Content-Based Filtering Rekomendasi Mobil Listrik

نویسندگان

چکیده

Mobil listrik mulai menjadi pilihan beberapa tahun terakhir ini, karakternya yang lebih ramah lingkungan serta biaya pemeliharaan rendah daripada mobil konvensional alasan utama konsumen memilihnya. Seiring meningkatnya minat konsumen, perusahaan besar banyak memproduksi dengan berbagai spesifikasi seperti kapasitas baterainya juga jarak tempuhnya. Hal tersebut membuat diberikan dalam memilih sesuai preferensinya. Penelitian ini ditujukan untuk mempermudah Metode digunakan adalah metode Content-Based Filtering dari sistem rekomendasi berfokus memberikan berdasarkan deskripsi barang hal disukai sisi pembentukan modelnya, melihat pemodelan menghasilkan akurasi baik, peneliti membandingkan TF-IDF Count Vectorization. Dimanfaatkan algoritma K-Nearest Neighbor menguji model terbentuk. Hasil penelitian menunjukkan bahwa dapat merekomendasikan terhadap konsumen. Dari akurasi, dibentuk menggunakan kecil yaitu sebesar 64% dibanding memanfaatkan Vectorization 75%..

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recommended model of information flow based on TF-IDF

This article constructed personalized recommendation models in online social streams based on ties strength, topic relevance and trust dimensions. The experiments on the Sina blogs data showed that the proposed method could reduce the ranks of irrelevant tweets effectively and achieve better performance than several baseline methods based on cosine and hash tags

متن کامل

Automatic Mood Classification Using TF*IDF Based on Lyrics

This paper presents the outcomes of research into using lingual parts of music in an automatic mood classification system. Using a collection of lyrics and corresponding user-tagged moods, we build classifiers that classify lyrics of songs into moods. By comparing the performance of different mood frameworks (or dimensions), we examine to what extent the linguistic part of music reveals adequat...

متن کامل

Clustering scRNA-Seq Data using TF-IDF

In this abstract, we propose several computational approaches for clustering scRNA-Seq data based on the Term Frequency Inverse Document Frequency (TF-IDF) transformation that has been successfully used in the field of text analysis. Empirical evaluation on simulated cell mixtures with different levels of complexity suggests that the TF-IDF methods consistently outperform existing scRNA-Seq clu...

متن کامل

Predicting IPO Performance from Nearest Neighbors Using TF-IDF Weighted Word Count Vectors

We introduce a novel approach to mining and leveraging data concerning stocks in order to predict the performance of new stocks following their initial public offering, a traditionally difficult task due to the lack of information and historical performance data. We collect a large corpus of articles for every existing stock between March 1st, 2014 and March 1st, 2015. We create weighted featur...

متن کامل

Deriving TF-IDF as a Fisher Kernel

The Dirichlet compound multinomial (DCM) distribution has recently been shown to be a good model for documents because it captures the phenomenon of word burstiness, unlike standard models such as the multinomial distribution. This paper investigates the DCM Fisher kernel, a function for comparing documents derived from the DCM. We show that the DCM Fisher kernel has components that are similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Explore It!: Jurnal Keilmuan & Aplikasi Teknik Informatika

سال: 2023

ISSN: ['2086-3489', '2549-354X']

DOI: https://doi.org/10.35891/explorit.v15i1.3829