Perceptual learning shapes multisensory causal inference via two distinct mechanisms
نویسندگان
چکیده
منابع مشابه
Perceptual learning shapes multisensory causal inference via two distinct mechanisms
To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a de...
متن کاملCausal Inference in Multisensory Perception
Perceptual events derive their significance to an animal from their meaning about the world, that is from the information they carry about their causes. The brain should thus be able to efficiently infer the causes underlying our sensory events. Here we use multisensory cue combination to study causal inference in perception. We formulate an ideal-observer model that infers whether two sensory ...
متن کاملMultisensory Causal Inference in the Brain
At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavio...
متن کاملCausal Inference in Multisensory Heading Estimation
A large body of research shows that the Central Nervous System (CNS) integrates multisensory information. However, this strategy should only apply to multisensory signals that have a common cause; independent signals should be segregated. Causal Inference (CI) models account for this notion. Surprisingly, previous findings suggested that visual and inertial cues on heading of self-motion are in...
متن کاملCausal Bandits: Learning Good Interventions via Causal Inference
We study the problem of using causal models to improve the rate at which good interventions can be learned online in a stochastic environment. Our formalism combines multi-arm bandits and causal inference to model a novel type of bandit feedback that is not exploited by existing approaches. We propose a new algorithm that exploits the causal feedback and prove a bound on its simple regret that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep24673