Percutaneous Cell Delivery into the Heart Using Hydrogels Polymerizing in Situ
نویسندگان
چکیده
منابع مشابه
Percutaneous cell delivery into the heart using hydrogels polymerizing in situ.
Heart disease is the leading cause of death in the US. Following an acute myocardial infarction, a fibrous, noncontractile scar develops, and results in congestive heart failure in more than 500,000 patients in the US each year. Muscle regeneration and the induction of new vascular growth to treat ischemic disorders of the heart can have significant therapeutic implications. Early studies in pa...
متن کاملElastomeric hydrogels by polymerizing silicone microemulsions.
Robust, transparent elastomeric hydrogels encoded with a bicontinuous structure result from the sequential photopolymerization of the aqueous hydroxyethyl methacrylate phase and crosslinking of the silicone phase of a silicone microemulsion stabilized with an acrylate-functional silicone-poly(ethylene glycol) surfactant.
متن کاملIn Situ Control of Cell Substrate Microtopographies Using Photolabile Hydrogels
Substratum topography can play a significant role in regulating cellular function and fate. To study cellular responses to biophysical cues, researchers have developed dynamic methods for controlling cell morphology; however, many of these platforms are limited to one transition between two predefined substratum topographies. To afford the user additional control over the presentation of microt...
متن کاملInjectable alginate hydrogels for cell delivery in tissue engineering.
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have...
متن کاملRegulating Stem Cell Secretome Using Injectable Hydrogels with In Situ Network Formation.
A family of shear-thinning hydrogels for injectable encapsulation and long-term delivery (SHIELD) has been designed and synthesized with controlled in situ stiffening properties to regulate the stem cell secretome. The authors demonstrate that SHIELD with an intermediate stiffness (200-400 Pa) could significantly promote the angiogenic potential of human adipose-derived stem cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Transplantation
سال: 2009
ISSN: 0963-6897,1555-3892
DOI: 10.3727/096368909788534915