Performance analysis of perturbation-based privacy preserving techniques: an experimental perspective

نویسندگان

چکیده

<span lang="EN-US">Nowadays, enormous amounts of data are produced every second. These also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through analyzing massive volumes to find usable information. Preserving personal during has become difficult, thus privacy-preserving (PPDM) used do so. perturbation one several tactics by PPDM privacy protection mechanism. In perturbation, datasets perturbed in order preserve Both accuracy addressed it. This paper will explore compare hybrid strategies that may be protect privacy. For this, two perturbation-based techniques named improved random projection (IRPP) enhanced principal component analysis-based technique (EPCAT) were used. methods employed assess precision, run time, experimental results. provides impacts preserving techniques. It observed approaches more efficient than traditional approach.</span>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Privacy Preserving Properties of Random Data Perturbation Techniques

Privacy is becoming an increasingly important issue in many data mining applications. This has triggered the development of many privacy-preserving data mining techniques. A large fraction of them use randomized data distortion techniques to mask the data for preserving the privacy of sensitive data. This methodology attempts to hide the sensitive data by randomly modifying the data values ofte...

متن کامل

Privacy-Preserving Collaborative Filtering Using Randomized Perturbation Techniques

Collaborative Filtering (CF) techniques are becoming increasingly popular with the evolution of the Internet. E-commerce sites use CF systems to suggest products to customers based on like-minded customers’ preferences. People use CF systems to cope with information overload. To conduct collaborative filtering, data from customers are needed. However, collecting high quality data from customers...

متن کامل

Privacy Preserving Data Stream Classification Using Data Perturbation Techniques

Data stream can be conceived as a continuous and changing sequence of data that continuously arrive at a system to store or process. Examples of data streams include computer network traffic, phone conversations, web searches and sensor data etc. These data sets need to be analyzed for identifying trends and patterns, which help us in isolating anomalies and predicting future behavior. However,...

متن کامل

Experimental Analysis of Privacy-Preserving Statistics Computation

The recent investigation of privacy-preserving data mining and other kinds of privacy-preserving distributed computation has been motivated by the growing concern about the privacy of individuals when their data is stored, aggregated, and mined for information. Building on the study of selective private function evaluation and the efforts towards practical algorithms for privacy-preserving data...

متن کامل

Privacy-preserving Collaborative Filtering based on Randomized Perturbation Techniques and Secure Multiparty Computation

With the evolution of the Internet, collaborative filtering techniques are becoming increasingly popular in E-commerce recommender systems. Such techniques recommend items to users employing similar users' preference data. People use recommender systems to cope with information overload. Although collaborative filtering systems are widely used by E-commerce sites, they fail to protect users' pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2023

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijece.v13i5.pp5273-5281