Perturbation Bounds of P-Matrix Linear Complementarity Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perturbation Bounds of P-Matrix Linear Complementarity Problems

We define a new fundamental constant associated with a P-matrix and show that this constant has various useful properties for the P-matrix linear complementarity problems (LCP). In particular, this constant is sharper than the Mathias-Pang constant in deriving perturbation bounds for the P-matrix LCP. Moreover, this new constant defines a measure of sensitivity of the solution of the P-matrix L...

متن کامل

Examples of Perturbation Bounds of P-matrix Linear Complementarity Problems1

We use the semi-smooth Newton method [13] to solve (1.8) in [CX] with stop criteria kr(x)k ≤ 10−14 and computer precisionmacheps = 10−16. We report numerical results in Table 1 and Table 2 where the fourth column and the fifth column represent the measure β(M)kMk for the LCP and the upper bounds (4.5), (4.6) of K(M) for the system of (1.8) in [CX], respectively. An exact error k4xk is computed ...

متن کامل

Computation of Error Bounds for P-matrix Linear Complementarity Problems

We give new error bounds for the linear complementarity problem where the involved matrix is a P-matrix. Computation of rigorous error bounds can be turned into a P-matrix linear interval system. Moreover, for the involved matrix being an H-matrix with positive diagonals, an error bound can be found by solving a linear system of equations, which is sharper than the Mathias-Pang error bound. Pre...

متن کامل

Matrix Linear Complementarity Problems

We consider the expected residual minimization formulation of the stochastic R0 matrix linear complementarity problem. We show that the involved matrix being a stochastic R0 matrix is a necessary and sufficient condition for the solution set of the expected residual minimization problem to be nonempty and bounded. Moreover, local and global error bounds are given for the stochastic R0 matrix li...

متن کامل

Simple Stochastic Games and P-Matrix Generalized Linear Complementarity Problems

We show that the problem of finding optimal strategies for both players in a simple stochastic game reduces to the generalized linear complementarity problem (GLCP) with a P-matrix, a well-studied problem whose hardness would imply NP = co-NP. This makes the rich GLCP theory and numerous existing algorithms available for simple stochastic games. As a special case, we get a reduction from binary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2008

ISSN: 1052-6234,1095-7189

DOI: 10.1137/060653019