Perturbation theorems for nonlinear systems of ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Nonlinear Ordinary Differential Equations
Most physical processes are modeled by differential equations. First order ordinary differential equations, also known as dynamical systems, arise in a wide range of applications, including population dynamics, mechanical systems, planetary motion, ecology, chemical diffusion, etc., etc. See [19, 72,ODES] for additional material and applications. The goal of this chapter is to study and solve i...
متن کاملPerturbation of Domain: Ordinary Differential Equations
We study a boundary perturbation problem for a one dimensional Schrödinger equation in which the potential has a regular singularity near the perturbed end point. We give the asymptotic behaviour of the eigenvalues under the perturbation. This problem arose out of the author’s studies of singular elliptic operators in higher dimensions and we illustrate this point with an example. The class of ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
INVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.
متن کاملUniqueness Theorems for Ordinary Differential Equations with Hölder Continuity
We establish some uniqueness results near 0 for ordinary differential equations of the type u(t) = f(u(t)) which satisfies u(0) = u′(0) = · · · = u(m−1)(0) = 0 and u(0) 6= 0 with m ≥ n. We also show that although f is not Lipschitz near 0, it is always Hölder continuous.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1982
ISSN: 0022-247X
DOI: 10.1016/0022-247x(82)90264-5