Plane graphs with maximum degree 9 are entirely 11-choosable
نویسندگان
چکیده
منابع مشابه
Planar graphs with maximum degree ∆ ≥ 9 are ( ∆ + 1 ) - edge - choosable – short proof
We give a short proof of the following theorem due to Borodin [2]. Every planar graph with maximum degree ∆ ≥ 9 is (∆ + 1)-edge-choosable. Key-words: edge-colouring, list colouring, List Colouring Conjecture, planar graphs This work was partially supported by the INRIA associated team EWIN between Mascotte and ParGO. in ria -0 04 32 38 9, v er si on 1 16 N ov 2 00 9 Les graphes planaires de deg...
متن کاملPlanar graphs with maximum degree ∆≥ 9 are (∆+1)-edge-choosable. A short proof
We give a short proof of the following theorem due to Borodin [2]. Every planar graph G with maximum degree at least 9 is (∆(G)+1)-edge-choosable.
متن کاملGraphs with maximum degree 6 are acyclically 11-colorable
An acyclic k-coloring of a graph G is a proper vertex coloring of G, which uses at most k colors, such that the graph induced by the union of every two color classes is a forest. In this note, we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving the main result of [12].
متن کاملPlanar graphs with maximum degree D at least 8 are (D+1)-edge-choosable
We consider the problem of list edge coloring for planar graphs. Edge coloring is the problem of coloring the edges while ensuring that two edges that are incident receive different colors. A graph is k-edge-choosable if for any assignment of k colors to every edge, there is an edge coloring such that the color of every edge belongs to its color assignment. Vizing conjectured in 1965 that every...
متن کاملGraphs of degree 4 are 5-edge-choosable
It is shown that every simple graph with maximal degree 4 is 5-edgechoosable. c © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 250–264, 1999
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2016
ISSN: 0012-365X
DOI: 10.1016/j.disc.2016.05.015