Plasmonic-Ceria Nanoparticles as Fluorescence Intensity and Lifetime Quenching Optical Sensor
نویسندگان
چکیده
منابع مشابه
Fluorescence lifetime optical projection tomography.
We describe a quantitative fluorescence projection tomography technique which measures the 3-D fluorescence lifetime distribution in optically cleared specimens up 1 cm in diameter. This is achieved by acquiring a series of wide-field time-gated images at different relative time delays with respect to a train of excitation pulses, at a number of projection angles. For each time delay, the 3-D t...
متن کاملPlasmonic Molecular Nanohybrids—Spectral Dependence of Fluorescence Quenching
We demonstrate strong spectral dependence of the efficiency of fluorescence quenching in molecular systems composed of organic dyes and gold nanoparticles. In order to probe the coupling with metallic nanoparticles we use dyes with varied spectral overlap between the plasmon resonance and their absorption. Hybrid molecular structures were obtained via conjugation of metallic nanoparticles with ...
متن کاملPlasmonic enhancement of fluorescence for sensor applications
In this work we report on the so-called plasmonic enhancement effect, whereby the presence of metallic surfaces or particles in the vicinity of a fluorophore can dramatically alter the fluorescence emission and absorption properties of a fluorophore. The effect, which is associated with the surface plasmon resonance of the metallic surface, depends on parameters such as metal type, particle siz...
متن کاملMCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles
In This research, gold nanoparticles were synthesized and functionalized by the antibody of aflatoxins. The quenching of the fluorescence of excitation emission matrices (EEM) of two type of aflatoxins (B1, G1), provoked by the gold nanoparticles, was studied by principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS). These aflatoxins show q...
متن کاملOptical properties of single coupled plasmonic nanoparticles.
The electromagnetic (EM) coupling between metal nanoparticles (NPs) is of essential importance in nanoplasmonic systems, leading to a variety of fundamental studies and practical applications. The successive investigations in this field not only bring forward surprising optical effects in nanoplasmonics, but also allow revealing other novel chemical/physical properties in relevant systems. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18092818