Point separation by bounded analytic functions of a covering Riemann surface
نویسندگان
چکیده
منابع مشابه
The number of ramified covering of a Riemann surface by Riemann surface
Interpreting the number of ramified covering of a Riemann surface by Riemann surfaces as the relative Gromov-Witten invariants and applying a gluing formula, we derive a recursive formula for the number of ramified covering of a Riemann surface by Riemann surface with elementary branch points and prescribed ramification type over a special point.
متن کاملBounded Analytic Functions
If D is a domain in the complex s-plane, then the family B=B(D) of bounded analytic functions in D is defined as consisting of those analytic functions ƒ(z) which are regular and single-valued in D and which satisfy the inequality \f(z) | < 1 at all points of D. The classical investigations of the family B(D) were restricted to the case in which D is a simply-connected domain. In fact, D was ge...
متن کاملOn Bounded Analytic Functions
The objective of this paper is to give an alternative derivation of results on bounded analytic functions recently obtained by Ahlfors [l] and Garabedian [2].1 While it is admitted that the main idea to be used is more in the nature of a lucky guess than of a method, it will be found that the gain in brevity and simplicity of the argument is considerable. As a by-product, we shall also obtain a...
متن کاملa genre analytic study of research papers written by bilingual writers and their beliefs: a case of persian-english writers
تحقیق حاضر گزارشی است از تحلیل بخش مقدمه دو دسته از مقالات که عبارتند از: 11 مقاله از دو نویسنده دوزبانه فارسی زبان, که شامل مقدمه 4 مقاله به زبان انگلیسی و چاپ شده در مجلات بین المللی, مقدمه 3 مقاله به زبان انگلیسی و 4 مقاله به زبان فارسی چاپ شده در مجلات داخلی می شود؛ و 12 مقاله از محققان خارجی که در مجله applied linguistics به چاپ رسیده است. مبنای تئوری این تحلیل ها نظریه سوئلز (1990) یا هما...
15 صفحه اولA Cauchy-riemann Equation for Generalized Analytic Functions
We denote by T 2 the torus: z = exp iθ, w = exp iφ, and we fix a positive irrational number α. Aα denotes the space of continuous functions f on T 2 whose Fourier coefficient sequence is supported by the lattice half-plane n + mα ≥ 0. R. Arens and I. Singer introduced and studied the space Aα, and it turned out to be an interesting generalization of the disk algebra. Here we construct a differe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1988
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1988.134.261