Polaroid and k-quasi-*-paranormal operators
نویسندگان
چکیده
منابع مشابه
On Quasi ∗-paranormal Operators
An operator T ∈ B(H) is called quasi ∗-paranormal if ||T ∗Tx||2 ≤ ||T x|||Tx|| for all x ∈ H. If μ is an isolated point of the spectrum of T , then the Riesz idempotent E of T with respect to μ is defined by
متن کاملPROPERTY (ω) AND QUASI-CLASS (A,k) OPERATORS
In this paper, we prove the following assertions: (i) If T is of quasiclass (A, k), then T is polaroid and reguloid; (ii) If T or T ∗ is an algebraically of quasi-class (A, k) operator, then Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iii) If T ∗ is an algebraically of quasi-class (A, k) operator, then a-Weyls theorem holds for f(T ) for every f ∈ Hol(σ(T )); (iv) If T ∗ is algebra...
متن کاملWeyl’s Theorem for Algebraically Paranormal Operators
Let T be an algebraically paranormal operator acting on Hilbert space. We prove : (i) Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )); (ii) a-Browder’s theorem holds for f(S) for every S ≺ T and f ∈ H(σ(S)); (iii) the spectral mapping theorem holds for the Weyl spectrum of T and for the essential approximate point spectrum of T . Mathematics Subject Classification (2000). Primary 47A10, 4...
متن کاملQuasi-Dirac Operators and Quasi-Fermions
We investigate examples of quasi-spectral triples over two-dimensional commutative sphere, which are obtained by modifying the order-one condition. We find equivariant quasi-Dirac operators and prove that they are in a topologically distinct sector than the standard Dirac operator. MSC 2000: 58B34, 46L87, 34L40
متن کاملQuasi-convex Functions and Quasi-monotone Operators
The notions of a quasi-monotone operator and of a cyclically quasi-monotone operator are introduced, and relations between such operators and quasi-convex functions are established.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2016
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1602313z