Polyanalytic Hardy decomposition of higher order Lipschitz functions

نویسندگان

چکیده

This paper is concerned with the problem of decomposing a higher order Lipschitz function on closed Jordan curve Γ into sum two polyanalytic functions in each open domain defined by Γ. Our basic tools are Hardy projections related to singular integral operator arising theory, which, as it proved here, represents an involution classes. result generalizes classical decomposition Hölder continuous boundary domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher order Hardy inequalities

This note deals with the inequality (∫ b a |u(x)|w0(x)dx )1/q ≤ C (∫ b a |u(x)|wk(x)dx )1/p , (1) more precisely, with conditions on the parameters p > 1, q > 0 and on the weight functions w0, wk (measurable and positive almost everywhere) which ensure that (1) holds for all functions u from a certain class K with a constant C > 0 independent of u. Here −∞ ≤ a < b ≤ ∞ and k ∈ N and we will cons...

متن کامل

Bi-Lipschitz Decomposition of Lipschitz functions into a Metric space

We prove a quantitative version of the following statement. Given a Lipschitz function f from the k-dimensional unit cube into a general metric space, one can be decomposed f into a finite number of BiLipschitz functions f |Fi so that the k-Hausdorff content of f([0, 1] r ∪Fi) is small. We thus generalize a theorem of P. Jones [Jon88] from the setting of R to the setting of a general metric spa...

متن کامل

On a Higher-order Hardy Inequality

The Hardy inequality ∫ Ω |u(x)|pd(x)−p dx c ∫ Ω |∇u(x)|p dx with d(x) = dist(x, ∂Ω) holds for u ∈ C∞ 0 (Ω) if Ω ⊂ n is an open set with a sufficiently smooth boundary and if 1 < p < ∞. P.Haj lasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend...

متن کامل

Double Sine Series and Higher Order Lipschitz Classes of Functions (communicated by Hüseyin Bor)

Let ω(h, k) be a modulus of continuity, that is, ω(h, k) is a continuous function on the square [0, 2π] × [0, 2π], nondecreasing in each variable, and possessing the following properties: ω(0, 0) = 0, ω(t1 + t2, t3) ≤ ω(t1, t3) + ω(t2, t3), ω(t1, t2 + t3) ≤ ω(t1, t2) + ω(t1, t3). Yu ([3]) introduced the following classes of functions: HH := {f(x, y) : ‖f(x, y)− f(x+ h, y)− f(x, y + k) + f(x+ h,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2020.124559