Polynomial Actions in Positive Characteristic
نویسندگان
چکیده
منابع مشابه
Diagonal Actions in Positive Characteristic
We prove positive characteristic analogues of certain measure rigidity theorems in characteristic zero. More specifically we give a classification result for positive entropy measures on quotients of SLd and a classification of joinings for higher rank actions on simply connected absolutely almost simple groups.
متن کاملCharacteristic Polynomial
A [ An−1 + p1A n−2 + · · ·+ pn−1 In ] = −pn In . Since A is nonsingular, pn = (−1)n det(A) 6= 0; thus the result follows. Newton’s Identity. Let λ1, λ2, . . . , λn be the roots of the polynomial K(λ) = λ + p1λ n−1 + p2λ n−2 + · · · · · ·+ pn−1λ+ pn. If sk = λ k 1 + λ k 2 + · · ·+ λn, then pk = − 1 k (sk + sk−1 p1 + sk−2 p2 + · · ·+ s2 pk−2p1 + s1 pk−1) . Proof. From K(λ) = (λ − λ1)(λ − λ2) . . ...
متن کاملPolynomial iteration in characteristic p ∗ †
Let f(x) = ∑d s=0 asx s ∈ Z[x] be a polynomial with ad 6≡ 0 mod p. Take z ∈ Fp and let Oz = {fi(z)}i∈Z+ ⊂ Fp be the orbit of z under f , where fi(z) = f(fi−1(z)) and f0(z) = z. For M < |Oz|, we study the diameter of the partial orbit Oz,M = {z, f(z), f2(z), . . . , fM−1(z)} and prove that diam Oz,M & min { M c log logM , Mp , M 1 2p 1 2 } , where ‘diameter’ is naturally defined in Fp and c depe...
متن کاملIn Positive Characteristic
We establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we ...
متن کاملTranscendence in Positive Characteristic
1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Современные проблемы математики
سال: 2012
ISSN: 2226-5929,2226-5937
DOI: 10.4213/spm33