Polynomial Actions in Positive Characteristic

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal Actions in Positive Characteristic

We prove positive characteristic analogues of certain measure rigidity theorems in characteristic zero. More specifically we give a classification result for positive entropy measures on quotients of SLd and a classification of joinings for higher rank actions on simply connected absolutely almost simple groups.

متن کامل

Characteristic Polynomial

A [ An−1 + p1A n−2 + · · ·+ pn−1 In ] = −pn In . Since A is nonsingular, pn = (−1)n det(A) 6= 0; thus the result follows. Newton’s Identity. Let λ1, λ2, . . . , λn be the roots of the polynomial K(λ) = λ + p1λ n−1 + p2λ n−2 + · · · · · ·+ pn−1λ+ pn. If sk = λ k 1 + λ k 2 + · · ·+ λn, then pk = − 1 k (sk + sk−1 p1 + sk−2 p2 + · · ·+ s2 pk−2p1 + s1 pk−1) . Proof. From K(λ) = (λ − λ1)(λ − λ2) . . ...

متن کامل

Polynomial iteration in characteristic p ∗ †

Let f(x) = ∑d s=0 asx s ∈ Z[x] be a polynomial with ad 6≡ 0 mod p. Take z ∈ Fp and let Oz = {fi(z)}i∈Z+ ⊂ Fp be the orbit of z under f , where fi(z) = f(fi−1(z)) and f0(z) = z. For M < |Oz|, we study the diameter of the partial orbit Oz,M = {z, f(z), f2(z), . . . , fM−1(z)} and prove that diam Oz,M & min { M c log logM , Mp , M 1 2p 1 2 } , where ‘diameter’ is naturally defined in Fp and c depe...

متن کامل

In Positive Characteristic

We establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we ...

متن کامل

Transcendence in Positive Characteristic

1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Современные проблемы математики

سال: 2012

ISSN: 2226-5929,2226-5937

DOI: 10.4213/spm33