Polynomial identities implying Capparelli's partition theorems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition Identities I: Sandwich Theorems and Logical 0-1 Laws

The Sandwich Theorems proved in this paper give a new method to show that the partition function a(n) of a partition identity

متن کامل

All congruence lattice identities implying modularity have

For an arbitrary lattice identity implying modularity (or at least congruence modularity) a Mal’tsev condition is given such that the identity holds in congruence lattices of algebras of a variety if and only if the variety satisfies the corresponding Mal’tsev condition. This research was partially supported by the NFSR of Hungary (OTKA), grant no. T034137 and T026243, and also by the Hungarian...

متن کامل

Partition Identities

A partition of a positive integer n (or a partition of weight n) is a non-decreasing sequence λ = (λ1, λ2, . . . , λk) of non-negative integers λi such that ∑k i=1 λi = n. The λi’s are the parts of the partition λ. Integer partitions are of particular interest in combinatorics, partly because many profound questions concerning integer partitions, solved and unsolved, are easily stated, but not ...

متن کامل

A Computer Proof of a Polynomial Identity Implying a Partition Theorem of Göllnitz

In this paper we give a computer proof of a new polynomial identity, which extends a recent result of Alladi and the first author. In addition, we provide computer proofs for new finite analogs of Jacobi and Euler formulas. All computer proofs are done with the aid of the new computer algebra package qMultiSum developed by the second author. qMultiSum implements an algorithmic refinement of Wil...

متن کامل

Identities from Partition Involutions

Subbarao and Andrews have observed that the combinatorial technique used by F. Franklin to prove Eulers famous partition identity (l-x)(l-x)(l-x)(l-x*) ••• = 1-x-x +x +x -x -x + ••• can be applied to prove the more general formula l-x-xy(l-xy) -xy(±-xy)(±-xy) xy (1 xy) (1 xy) (1 xy) = 1 -x-xy+xy+xy -xy -xy + • •• which reduces to Eulers when y = 1. This note shows that several finite versions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2019

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.02.028