Polynomial reproduction of multivariate scalar subdivision schemes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalar multivariate subdivision schemes and box splines

We study convergent scalar d-variate subdivision schemes satisfying sum rules of order k ∈ N, with dilation matrix 2I . Using the results of Möller and Sauer in [18], stated for general expanding dilation matrices, we characterize the structure of the mask symbols of such schemes by showing that they must be linear combinations of shifted box spline generators of a quotient polynomial ideal J ....

متن کامل

Polynomial reproduction by symmetric subdivision schemes

We first present necessary and sufficient conditions for a linear, binary, uniform, and stationary subdivision scheme to have polynomial reproduction of degree d and thus approximation order d + 1. Our conditions are partly algebraic and easy to check by considering the symbol of a subdivision scheme, but also relate to the parameterization of the scheme. After discussing some special propertie...

متن کامل

Polynomial reproduction for univariate subdivision schemes of any arity

In this paper we study the ability of convergent subdivision schemes to reproduce polynomials in the sense that for initial data, which is sampled from some polynomial function, the scheme yields the same polynomial in the limit. This property is desirable because the reproduction of polynomials up to some degree d implies that a scheme has approximation order d +1. We first show that any conve...

متن کامل

Polynomial Reproduction in Subdivision

We study conditions on the matrix mask of a vector subdivision scheme ensuring that certain polynomial input vectors yield polynomial output again. The conditions are in terms of a recurrence formula for the vectors which determine the structure of polynomial input with this property. From this recurrence, we obtain an algorithm to determine polynomial input of maximal degree. The algorithm can...

متن کامل

Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix

We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new sche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2013

ISSN: 0377-0427

DOI: 10.1016/j.cam.2012.06.013