Polynomial Sequences of Binomial-Type Arising in Graph Theory
نویسندگان
چکیده
منابع مشابه
Polynomial Sequences of Binomial-Type Arising in Graph Theory
In this paper, we show that the solution to a large class of “tiling” problems is given by a polynomial sequence of binomial type. More specifically, we show that the number of ways to place a fixed set of polyominos on an n × n toroidal chessboard such that no two polyominos overlap is eventually a polynomial in n, and that certain sets of these polynomials satisfy binomial-type recurrences. W...
متن کاملSchur Type Functions Associated with Polynomial Sequences of Binomial Type
We introduce a class of Schur type functions associated with polynomial sequences of binomial type. This can be regarded as a generalization of the ordinary Schur functions and the factorial Schur functions. This generalization satisfies some interesting expansion formulas, in which there is a curious duality. Moreover this class includes examples which are useful to describe the eigenvalues of...
متن کاملPolynomial Sequences of Binomial Type and Path Integrals
Polynomial sequences pn(x) of binomial type are a principal tool in the umbral calculus of enumerative combinatorics. We express pn(x) as a path integral in the “phase space” N× [−π, π]. The Hamiltonian is h(φ) = ∑n=0 p ′ n(0)/n!e inφ and it produces a Schrödinger type equation for pn(x). This establishes a bridge between enumerative combinatorics and quantum field theory. It also provides an a...
متن کاملA Family of Sequences of Binomial Type
For a delta operator aD − bD we find the corresponding polynomial sequence of binomial type and relations with Fuss numbers. In the case of D − 1 2D 2 we show that the corresponding Bessel–Carlitz polynomials are moments of the convolution semigroup of inverse Gaussian distributions. We also find probability distributions νt, t > 0, for which {yn(t)}, the Bessel polynomials at t, is the moment ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2014
ISSN: 1077-8926
DOI: 10.37236/3702