Polynomial Smooth Twin Support Vector Machines
نویسندگان
چکیده
منابع مشابه
Polynomial Smooth Twin Support Vector Machines
Smoothing functions can transform the unsmooth twin support vector machines (TWSVM) into smooth ones, and thus better classification results can be obtained. It has been one of the key problems to seek a better smoothing function in this field for a long time. In this paper, a novel version for smooth TWSVM, termed polynomial smooth twin support vector machines (PSTWSVM), is proposed. In PSTWSV...
متن کاملPolynomial Smooth Twin Support Vector Machines Based on Invasive Weed Optimization Algorithm
Smoothing functions can transform the unsmooth twin support vector machines (TWSVM) into smooth ones, and thus better classification results can be obtained. It has been one of the key problems to seek a better smoothing function in this field for a long time. In this paper, a novel version for smooth TWSVM, termed polynomial smooth twin support vector machines (PSTWSVM), is proposed. In PSTWSV...
متن کاملSmooth Support Vector Machines
Smoothing methods, extensively used for solving important mathematical programming problems and applications, are proposed here to generate and solve an unconstrained smooth reformulation of support vector machines for pattern classification using completely arbitrary kernels. We term such reformulations smooth support vector machines (SSVMs). A fast Newton-Armijo algorithm for solving the SSVM...
متن کاملMultiple Instance Twin Support Vector Machines ∗
Considering the multiple instance learning(MIL) in classification problem, a novel multiple instance twin support vector machines(MI-TWSVM) method is proposed. For linear classification, unlike other maximum margin SVM-based MIL methods, the proposed approach leads to two non-parallel hyperplanes. The non-linear classification via kernels is also studied. Preliminary experimental results on pub...
متن کاملMultitask centroid twin support vector machines
Twin support vector machines are a recently proposed learning method for binary classification. They learn two hyperplanes rather than one as in conventional support vector machines and often bring performance improvements. However, an inherent shortage of twin support vector machines is that the resultant hyperplanes are very sensitive to outliers in data. In this paper, we propose centroid tw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics & Information Sciences
سال: 2014
ISSN: 1935-0090,2325-0399
DOI: 10.12785/amis/080465