Position and stiffness control of an antagonistic variable stiffness actuator with input delay using super-twisting sliding mode control

نویسندگان

چکیده

Motor dynamics in antagonistic variable stiffness actuator (AVSA) is generally disregarded control system design. This ignorance can lead to an inaccurate model, affecting the performance of closed-loop system. The motor be modeled as input-delay model. In this paper, input time-delay for AVSA first time. a nonlinear function states; thus, tracking challenging task. Specifically, many existing delay compensation controllers cannot used when model contains delay. To handle issue, transformation introduced and super-twisting sliding mode then utilized reach position simultaneously. Prediction-based feedback involved together with some disturbance observers estimating external compensate time-delay. Simulation results show that proposed design approach successful simultaneously attenuating effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stiffness Estimator for Agonistic-Antagonistic Variable-Stiffness-Actuator Devices

Safe Physical Human Robot Interaction, conservation of energy and adaptability are just the main robotic applications that prompted the development of a number of Variable Stiffness Actuators (VSA). Implemented in a variety of ways, they use various technologies, and feature the most diverse mechanical solutions, all of which share a fundamentally unavoidable nonlinear behavior. The control sch...

متن کامل

Sliding Mode Control for Active Suspension System with Actuator Delay

Sliding mode controller for a vehicle active suspension system is designed in this study. The widely used quarter car model is preferred and it is aimed to improve the ride comfort of the passengers. The effect of the actuator time delay, which may arise due to the information processing, sensors or actuator dynamics, is also taken into account during the design of the controller. A sliding mod...

متن کامل

Semi-active Control of Building Structures using Variable Stiffness Device and Fuzzy Logic

Semi-active control devices, also called “Intelligent” control devices, constitute the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy, but this control device has been shown to be more energy-efficient than active devices. A particular type of semi-active control device, the Variable Stiffness Device (VSD...

متن کامل

Sliding Mode Control Based Piezoelectric Actuator Control

In this paper a method for piezoelectric stack actuator control is proposed. In addition a brief discussion about the usage of the same methods for estimation of external force acting to the actuator in contact with environment is made. The method uses sliding mode framework to design both the observer and the controller based on an electromechanical lumped model of the piezoelectric actuator. ...

متن کامل

Control of PEM fuel cell power system using sliding mode and super-twisting algorithms

Traditional sliding mode controller applied to a DC/DC boost converter for the improvement and optimization of the proton exchange membrane fuel cell (PEMFC) system efficiency, has the drawback of chattering phenomenon. Thus, based on the analysis of the mathematical model of PEMFC, this paper addresses the second order super twisting algorithm (STA) as a solution of chattering reduction, Stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2022

ISSN: ['1573-269X', '0924-090X']

DOI: https://doi.org/10.1007/s11071-022-08123-w