Positive solutions for singular m-point boundary value problems with sign changing nonlinearities depending onx′

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITIES DEPENDING ON x′

Using a fixed point theorem in cones, this paper shows the existence of positive solutions for the singular three-point boundary-value problem x′′(t) + a(t)f(t, x(t), x′(t)) = 0, 0 < t < 1, x′(0) = 0, x(1) = αx(η), where 0 < α < 1, 0 < η < 1, and f may change sign and may be singular at x = 0 and x′ = 0.

متن کامل

Positive Solutions for Singular m-Point Boundary Value Problems with Sign Changing Nonlinearities

Using the theory of fixed point theorem in cone, this paper presents the existence of positive solutions for the singular m-point boundary value problem

متن کامل

Multiple Positive Solutions for Nonlinear Second-order M-point Boundary-value Problems with Sign Changing Nonlinearities

In this paper, we study the nonlinear second-order m-point boundary value problem u′′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, βu(0)− γu′(0) = 0, u(1) = m−2 X i=1 αiu(ξi), where the nonlinear term f is allowed to change sign. We impose growth conditions on f which yield the existence of at least two positive solutions by using a fixed-point theorem in double cones. Moreover, the associated Green’s function...

متن کامل

Positive solutions of second-order m-point boundary value problems with changing sign singular nonlinearity

In this work, some new existence results of positive solutions for a class of singular m-point boundary value problems with changing sign nonlinearity are obtained, which improve on many known results. c © 2006 Elsevier Ltd. All rights reserved.

متن کامل

Multiple Positive Solutions for Second-order Three-point Boundary-value Problems with Sign Changing Nonlinearities

In this article, we study the second-order three-point boundaryvalue problem u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = αu(η), where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Williams fixed-point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2009

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2009.1.43