Powers and Polynomials in ${\Bbb Z}_m$
نویسندگان
چکیده
منابع مشابه
An improved bound on correlation between polynomials over Z_m and MOD_q
Let m, q > 1 be two integers that are co-prime and A be any subset of Zm. Let P be any multi-variate polynomial of degree d in n variables over Zm. We show that the MODq boolean function on n variables has correlation at most exp(−Ω(n/(m2 ))) with the boolean function f defined by f(x) = 1 iff P (x) ∈ A for all x ∈ {0, 1}. This improves on the bound of exp(−Ω(n/(m2))) obtained in the breakthrou...
متن کاملRoots of Polynomials Modulo Prime Powers
To say that R is a root set modulo n means that R is a subset of Z n , the ring of integers modulo n , and there is a polynomial the roots of which modulo n are exactly the elements of R . Note that [ and Z n are always root sets modulo n . It seems that only two papers have appeared which mention the nature of root sets modulo n , and then only at a very basic level : Sierpin ́ ski [3] and Choj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Elemente der Mathematik
سال: 1999
ISSN: 0013-6018,1420-8962
DOI: 10.1007/s000170050003