(p,q)-Convexity in quasi-Banach lattices and applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces

In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings.  Then, we give  applications of our main results in equilibrium problems.

متن کامل

Quasi-convexity and Shrinkwrapping

We extend a result of Minsky to show that for a map of a surface to a hyperbolic 3-manifold which is not necessarily π1-injective but is 2-incompressible rel a geodesic link with a definite tube radius, the set of noncontractible simple loops with a bounded length representatives is quasi-convex in the complex of curves.

متن کامل

Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions

L’accès aux archives de la revue « Revue française d’automatique informatique recherche opérationnelle. Mathématique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyr...

متن کامل

Some results about unbounded convergences in Banach lattices

Suppose E is a Banach lattice. A net  in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to  provided that the net  convergences to zero, weakly.  In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and   from ideals and sublattices. Compatible with un-convergenc, we show that ...

متن کامل

Superreflexivity and J–convexity of Banach Spaces

Abstract. A Banach space X is superreflexive if each Banach space Y that is finitely representable in X is reflexive. Superreflexivity is known to be equivalent to J-convexity and to the non-existence of uniformly bounded factorizations of the summation operators Sn through X. We give a quantitative formulation of this equivalence. This can in particular be used to find a factorization of Sn th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1986

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-84-2-113-124