Preconditioning operators and Sobolevgradients for nonlinear elliptic problems
نویسندگان
چکیده
منابع مشابه
Operator preconditioning with efficient applications for nonlinear elliptic problems
Nonlinear elliptic partial differential equations form a class of equations that is widespread in modelling various nonlinear phenomena in science, hence their numerical solution has continuously been a subject of extensive research. Such problems also arise from timedependent nonlinear PDE problems, either on the time levels after the time discretization or as describing steady-states of the p...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Equivalent operator preconditioning for linear elliptic problems
Finite element or finite difference approximations to linear partial differential equations of elliptic type lead to algebraic systems, normally of very large size. However, since the matrices are sparse, even extremely large-sized systems can be handled. To save computer memory and elapsed time, such equations are normally solved by iteration, most commonly using a preconditioned conjugate gra...
متن کاملNonlinear Elliptic Problems
with Aa having at most polynomial growth, by applying a general theorem concerning nonlinear functional equations in reflexive Banach spaces. Our result in [ l] extended and generalized results announced earlier by M. I. Visik [6; 7; 8] and obtained by more concrete analytic arguments. Visik's detailed account of his results which has just appeared in [9] has one feature which goes beyond the f...
متن کاملWavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity
Wavelet methods allow to combine high order accuracy, eecient preconditioning techniques and adaptive approximation, in order to solve eeciently elliptic operator equations. Many diiculties remain, in particular related to the adaptation of wavelet decompositions to bounded domains with prescribed boundary conditions, as well as the possibly high constants in the O(1) preconditioning. In this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2005
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2005.08.010