Predicting CME arrival time through data integration and ensemble learning

نویسندگان

چکیده

The Sun constantly releases radiation and plasma into the heliosphere. Sporadically, launches solar eruptions such as flares coronal mass ejections (CMEs). CMEs carry away a huge amount of magnetic flux with them. An Earth-directed CME can cause serious consequences to human system. It destroy power grids/pipelines, satellites, communications. Therefore, accurately monitoring predicting is important minimize damages In this study we propose an ensemble learning approach, named CMETNet, for arrival time from Earth. We collect integrate eruptive events two cycles, #23 #24, 1996 2021 total 363 geoeffective CMEs. data used making predictions include features, wind parameters images obtained SOHO/LASCO C2 coronagraph. Our framework comprises regression algorithms numerical analysis convolutional neural network image processing. Experimental results show that CMETNet performs better than existing machine methods reported in literature, Pearson product-moment correlation coefficient 0.83 mean absolute error 9.75 h.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

Visual Integration of Data and Model Space in Ensemble Learning

Ensembles of classifier models typically deliver superior performance and can outperform single classifier models given a dataset and classification task at hand. However, the gain in performance comes together with the lack in comprehensibility, posing a challenge to understand how each model affects the classification outputs and where the errors come from. We propose a tight visual integrati...

متن کامل

intentional and incidental vocabulary learning through listening comprehension

یکی از مسایل مهم در یادگیری زبان ، یادگیری لغت است. هدف این تحقیق ، بررسی یاد گیری شیوه های مستقیم و غیر مستقیم فراگیری لغت درفرایند شنیداری زبان است و اینکه کدامیک از آنها برای بهبود و تسهیل یادگیری واژگان زبان آموزان سطح متوسطه موثرترند.این تحقیق تفاوت بین تاثیر فراگیری مستقیم و غیر مستقیم لغت در فرایند شنیداری زبان در کوتاه مدت را بررسی می کند ، سپس تفاوت بین تاثیر یادگیری مستقیم و غیر مستقی...

15 صفحه اول

Ensemble learning of genetic networks from time-series expression data

MOTIVATION Inferring genetic networks from time-series expression data has been a great deal of interest. In most cases, however, the number of genes exceeds that of data points which, in principle, makes it impossible to recover the underlying networks. To address the dimensionality problem, we apply the subset selection method to a linear system of difference equations. Previous approaches as...

متن کامل

Advancing Post-Genome Data and System Integration Through Machine Learning

Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may suppor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Astronomy and Space Sciences

سال: 2022

ISSN: ['2296-987X']

DOI: https://doi.org/10.3389/fspas.2022.1013345