Prediction of Child Birth Weight Using Kernel Extreme Reservoir Machine and QPSO for Optimization
نویسندگان
چکیده
منابع مشابه
Bubble Pressure Prediction of Reservoir Fluids using Artificial Neural Network and Support Vector Machine
Bubble point pressure is an important parameter in equilibrium calculations of reservoir fluids and having other applications in reservoir engineering. In this work, an artificial neural network (ANN) and a least square support vector machine (LS-SVM) have been used to predict the bubble point pressure of reservoir fluids. Also, the accuracy of the models have been compared to two-equation stat...
متن کاملThe Hybrid of Classification Tree and Extreme Learning Machine for Permeability Prediction in Oil Reservoir
Permeability is an important parameter connected with oil reservoir. In the last two decades, artificial intelligence models have been used. The current best prediction model in permeability prediction is extreme learning machine (ELM). It produces fairly good results but a clear explanation of the model is hard to come by because it is so complex. The aim of this research is to propose a way o...
متن کاملMultiple kernel extreme learning machine
Extreme learning machine (ELM) has been an important research topic over the last decade due to its high efficiency, easy-implementation, unification of classification and regression, and unification of binary and multi-class learning tasks. Though integrating these advantages, existing ELM algorithms pay little attention to optimizing the choice of kernels, which is indeed crucial to the perfo...
متن کاملFault Diagnosis of Power Transformers using Kernel based Extreme Learning Machine with Particle Swarm Optimization
To improve the fault diagnosis accuracy for power transformers, this paper presents a kernel based extreme learning machine (KELM) with particle swarm optimization (PSO). The parameters of KELM are optimized by using PSO, and then the optimized KELM is implemented for fault classification of power transformers. To verify its effectiveness, the proposed method was tested on nine benchmark classi...
متن کاملParameters Selection of Kernel Based Extreme Learning Machine Using Particle Swarm Optimization
The generalization performance of kernel based extreme learning machine (KELM) with Gaussian kernel are sensitive to the parameters combination (C, γ). The best generalization performance of KELM with Gaussian kernel is usually achieved in a very narrow range of such combinations. In order to achieve optimal generalization performance, the parameters of KELM with Gaussian kernel were optimized ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SN Computer Science
سال: 2021
ISSN: 2662-995X,2661-8907
DOI: 10.1007/s42979-021-00601-z