Prime divisors of powers of ideals in some Laskerian rings
نویسندگان
چکیده
منابع مشابه
ON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملLinks of symbolic powers of prime ideals
In this paper, we prove the following. Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 2. Suppose that either R is not regular or R is regular with d ≥ 3. Let t ≥ 2 be a positive integer. If {α1, . . . , αd} is a regular sequence contained in m, then (α1, . . . , αd) : m t ⊆ m. This result gives an affirmative answer to a conjecture raised by Polini and Ulrich.
متن کاملAssociated Prime Ideals of Skew Polynomial Rings
In this paper, it has been proved that for a Noetherian ring R and an automorphism σ of R, an associated prime ideal of R[x, σ] or R[x, x−1, σ] is the extension of its contraction to R and this contraction is the intersection of the orbit under σ of some associated prime ideal of R. The same statement is true for minimal prime ideals also. It has also been proved that for a Noetherian Q-algebra...
متن کاملAsymptotic Prime Divisors of Torsion-free Symmetric Powers of Modules
Let R be a Noetherian ring, F := Rr and M ⊆ F a submodule of rank r. Let A∗(M) denote the stable value of Ass(Fn/Mn), for n large, where Fn is the nth symmetric power of Fn and Mn is the image of the nth symmetric power of M in Fn. We provide a number of characterizations for a prime ideal to belong to A∗(M). We also show that A∗(M) ⊆ A∗(M), where A∗(M) denotes the stable value of Ass(Fn/Mn).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1991
ISSN: 0022-4049
DOI: 10.1016/0022-4049(91)90112-f