Principal Component Analysis of Dynamic Relative Displacement Fields Estimated from MR Images

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Component Analysis of Dynamic Relative Displacement Fields Estimated from MR Images

Non-destructive measurement of acceleration-induced displacement fields within a closed object is a fundamental challenge. Inferences of how the brain deforms following skull impact have thus relied largely on indirect estimates and course-resolution cadaver studies. We developed a magnetic resonance technique to quantitatively identify the modes of displacement of an accelerating soft object r...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

Scatter segmentation in dynamic SPECT images using principal component analysis

Dynamic single photon emission computed tomography (dSPECT) provides time-varying spatial information about changes of tracer distribution in the body from data acquired using a standard (single slow rotation) protocol. Variations of tracer distribution observed in the images might be due to physiological processes in the body, but may also stem from reconstruction artefacts. These two possibil...

متن کامل

Using the robust principal component analysis algorithm to remove RF spike artifacts from MR images

PURPOSE Brief bursts of RF noise during MR data acquisition ("k-space spikes") cause disruptive image artifacts, manifesting as stripes overlaid on the image. RF noise is often related to hardware problems, including vibrations during gradient-heavy sequences, such as diffusion-weighted imaging. In this study, we present an application of the Robust Principal Component Analysis (RPCA) algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLoS ONE

سال: 2011

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0022063